skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taves, Jay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We describe a simulation environment that enables the design and testing of control policies for off-road mobility of autonomous agents. The environment is demonstrated in conjunction with the training and assessment of a reinforcement learning policy that uses sensor fusion and interagent communication to enable the movement of mixed convoys of human-driven and autonomous vehicles. Policies learned on rigid terrain are shown to transfer to hard (silt-like) and soft (snow-like) deformable terrains. The environment described performs the following: multivehicle multibody dynamics cosimulation in a time/space-coherent infrastructure that relies on the Message Passing Interface standard for low-latency parallel computing; sensor simulation (e.g., camera, GPU, IMU); simulation of a virtual world that can be altered by the agents present in the simulation; training that uses reinforcement learning to “teach” the autonomous vehicles to drive in an obstacle-riddled course. The software stack described is open source. Relevant movies: Project Chrono. Off-road AV simulations, 20202. 
    more » « less